《3的倍数的特征》教学设计

时间:2023-11-30 15:18:54
《3的倍数的特征》教学设计

《3的倍数的特征》教学设计

作为一名专为他人授业解惑的人民教师,往往需要进行教学设计编写工作,借助教学设计可以让教学工作更加有效地进行。我们该怎么去写教学设计呢?下面是小编为大家整理的《3的倍数的特征》教学设计,希望对大家有所帮助。

《3的倍数的特征》教学设计1

一、设疑激趣,导入新课

1、复习旧知

(1)谁能说一说,什么样的数是2的倍数?什么样的数是5的倍数?并举两个例子。

(2)下面这些数是2或5的倍数吗?

324,153,345,2460,986

[温故而知新]

2、悬念激趣

为迅速提高美术兴趣小组的绘画水平,须加强训练。现有美术纸534张,不通过计算,你能立即说出这些纸能平均分赠给三位同学吗?(如果能判断出这个数是是3的倍数,就能知道这些纸能不能平均分给三个同学了。)这节课,我们就一起来研究3的倍数的特征。(板书:3的倍数的特征)

[兴趣是最好的老师,举这个贴近学生生活的例子,激发学生学习本课知识和技能的兴趣。]

二、观察分析,探究规律

1、引导观察,调整思路

(1)下面各数中,哪些是3的倍数?

21 42 63 84 15 36 57 78 99

11 32 53 74 95 26 47 68 89

[这个例子是引来的他方之石,我觉得是最能打破前面寻找2、5倍数特征的一组数。激发学生继续探索新方法的积极性。]

(2)师问:你能从个位上找出一个数是3的倍数的特征吗?从十位上呢?

(3)前后桌四人一小组讨论。[课堂讨论的主要组织形式]

学生讨论发现:这两组数个位上分别为1-9(有的学生也发现:十位上也分别是1-9),但第一组的数均是3的倍数,第二组的数都不是3的位数,因此无法从个位或十位找出是3的倍数的特征。

通过讨论还发现:是不是3的倍数,已不再取决于个位或十位上的数字了。

(4)教师立即提出:为了找到更好的答案,必须探索新的解决办法。

[师不断伺机激发学生探究学习]

2、组织活动,探索规律

(1)插入讨论找3的倍数过程的动画。

出现课本中的数例:

3×1=3

3×2=6

3×3=9

3×4=12 12→1+2=3 (3是3的倍数)

3×5=15 15→1+5=6 (6是3的倍数)

3×6=18 18→1+8=9 (9是3的倍数)

3×7=21

……

(2)继续探究

请你从1、2、3、4、5、6六张数字卡片中挑出其中三张,排成是3的倍数的三位数,你能排出多少个?

可以是: 123,234,345,456,135,246

还可以是:126,156

引导学生讨论:从上面这些三位数中,你能发现3的倍数的特征吗?

讨论发现:一个数是不是3的倍数,只同所选的数字有关,而与数字的排列位置无关。而且这些3的倍数的数的各位数字和都是3的倍数。

(4)小结

一个数各位上的数和是3的倍数,这个数就是3的倍数。

[至此,基本上可以水到渠成了。学生的总结,难题已基本攻克。]

《3的倍数的特征》教学设计2

【教学内容】

2、3、5的倍数的特征练习课

【教学目标】

1、经历在100以内的自然数表中找2、3、5的倍数的活动,感悟倍数的特征,并能熟练应用。

2、体会数学的奥妙;在运用规律中,体验数学的价值。

【教学重、难点】

是2、3、5倍的特征。

【学情分析】

通过练习来巩固2、3、5的倍数的特征,使学生在应用中更加得心应手。

【教学过程】

一、在100以内的自然数表中找2、3、5的倍数。

师:同学们,我们已经知道了2、3、5数的倍数,那么大家就在表中找一找2、3、5数的倍数。(独立完成)

1、指名回答,集体判断。

2、指名说一说2、3、5数的倍数的特征。

3、对比异同。

二、回顾奇数和偶数的概念。

1、指名回答。

2、小组补充。

3、练习:(先分小组小说,再全班统一回答。)

①说出8个2的倍数。要求:两位数。

②说出5个不是2的倍数的三位数。

③说出5~35以内的偶数。

【课堂练习】

出示投影

【课堂小结】

这节课你有什么收获?

《3的倍数的特征》教学设计3

一、教学目标设置:

依据一:《课程标准》

1、总体和学段目标中的描述:

(1)体验从具体情境中抽象出数的过程,掌握必要的运算技能。

(2)初步学会与他人合作解决问题,尝试解释自己的思考过程。

2.内容目标中的描述:

掌握因数和倍数、质数和合数、奇数和偶数等概念,以及2、3、5的倍数的特征.

依据二:《教师教学用书》中的单元目标的具体描述。

使学生通过主探索,掌握2,5,3的倍数的特征。

依据三:教材和学情

教材分析:

教材把课题确定为“探索活动”,其目的就是要让学生经历探索知识的过程。教材首先提出“我们研究了2、5倍数的特征,那么,3的倍数有什么特征”的问题,目的是引导学生思考和探索3的倍数的特征。教材提供了一张100以内的数目表,引导学生发现3的倍数特征。学生在探索过程中,发现3的倍数特征与2和5的倍数特征的不同,2、5的倍数特征主要观察数的个位,而3的倍数特征要观察各个数位数字的和是否是3的倍数。从而发现个位和十位都没有什么规律,而要找到各个数位上的和有什么规律。在初步得出结论的基础上,教师应进一步提出“这个规律对三位数是否成立”的问题,促使学生能自己造出更大的数来验证规律。需要注意的是在日常的练习与评价时,一般只要求学生判断100以内的数是否是3的倍数。因此,本课着重引导学生找到和发现着重点,从而归纳概括了3的倍数的特征。

学情分析:

学生在学习本课之前,已经学习了2和5的倍数的特征,养成善于动脑思考、讨论、交流与研究,积极进行小组合作的习惯。可以说,学生有了一定的自学与研究的能力。

学生容易从末尾数字进行判断这个数是否是3的倍数。所以,在教学本课时,让学生通过观察、思考、分析、归纳等活动,让他们真正理解、掌握、判断3的倍数的方法。< ……此处隐藏12513个字……多加评论,作为后续的学习内容。

(4)在这个过程中,学生可能会得出猜想结论的成立,即:个位上是3,6,9的数是3的倍数。

3、验证猜想。

(1)让学生举例子对猜想的结论进行验证。

(2)在这个过程中,学生可能会发现下面两种情况。

①15是3的倍数,但是个位上的数字是5,不是3,6,9。

②16个位上的数字是6,但是不是3的倍数。

(3)猜想的结论不成立。

(4)让学生对猜想的结论不成立这个问题,提出自己的想法。

在讨论和交流中明白对于一个结论是否成立,只举一个正例是不够的,但是只要举出一个反例就可以推翻一个结论。

(二)在质疑中引导学生探究3的倍数的特征。

1、问题冲突:那么多的数,我们怎么找呢?我们要聪明的找,从比较小的数开始找。

2、请在下表中找出3的倍数,并做上记号。

(教师出示100以内数表,学生人手一张,在学生活动后,组织学生进行交流,并呈现学生已圈出3的倍数的100以内数表,如下图)

3、观察3的倍数,你发现了什么?与同桌交流一下。

(1)在这个过程中,教师要作为一个倾听着,听学生有什么发现,有什么困惑。

(2)学生发现个位上的数字没有什么规律,十位上的数字也没有什么规律。

4、教师引领。

(1)斜着观察,你发现了什么?

(2)在学生观察思考的基础上,根据学生的实际情况提供新的思考点:将每个数的各个数字加起来试试看。

5、得出结论。

一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

6、验证结论。

(1)利用100以内数表来验证。

(2)延伸到三位数或更大的数。

①回到我们课始的问题,用学生写出的345或354等例子进行验证,

②写一个更大的数试试看。

(3)完成课本第7页的试一试和练一练第1题和第2题。在学生独立完成的基础上,进行讨论和交流。注意对学习困难学生的指导和帮助。

活动三:拓展与延伸

(一)回顾与反思

(1)教师和学生一起回顾整节课的思考过程,一种学习方法的指导。

(2)回顾学习的知识有哪些,再次进行整理与归纳。

(二)完成实践活动

1、猜想并验证9的倍数的特征。

(1)学生阅读教材,按照教材上几个问题分层次展开研究。

(2)个人独立思考,小组研究的基础上进行全班的交流。

特别说明:这个学习过程可能在课内完成不了,可以延伸到课外,让学生积极主动地进行探索与研究,一定让学生经历涂、画等过程,使学生获得真实的体验。

《3的倍数的特征》教学设计15

教学目标:

1.使学生经历探索3的倍数的特征的活动,知道3的倍数的特征,能判断一个数是不是3的倍数。

2.使学生体会探索数的特征的一些方法,能通过分析、比较、归纳或猜想、检验等方法发现3的倍数的特征。

3.在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。

教学重点:

1.探索并理解3的倍数的特征。

2.会应用特征判断一个数是不是3的倍数。

教学难点: 探索并理解3的倍数的特征。

教具学具:多媒体、计数器、计算器。

教学过程:

一、复习旧知 引发猜想

1.师:前面我们学习了2、5的倍数的特征,谁来说一说2、5的倍数的特征是什么?

2.师:3的倍数会有怎样的特征呢,同学们大胆地猜想一下?

二、自主探究 合作验证

1.师:大家的猜想对不对呢?请同学们仔细观察这些100以内3的倍数,再和你刚才的猜想对比一下,你想说点什么?

2.师:看来,3的倍数个位上没什么规律,那3的倍数究竟有什么特征呢?下面我们就来共同研究这个问题(板书课题)。

(1)出示表格

算珠的颗数

算珠的颗数是不是3的倍数

这个数是不是3的倍数

57

114

86

951

798

432

169

思考:算珠的颗数和这个数有什么关系?

仔细观察,你有什么发现?

师:请同学们看57,先用计数器拨出来,看一共用了几颗算珠?再判断一下算珠的颗数是不是3的倍数?然后用计算器算一算,57是不是3的倍数?(生边回答师边填写)明白怎样填写了吗?

请大家同位合作边操作边填写边思考。

(学生操作,同位合作、交流)

(2)师:谁来把你们小组填写的表格给大家展示一下。

(学生汇报展示,其他小组进行评价,集体订正表格)

(3)师:同学们看,算珠的颗数和这个数有什么关系?

(学生观察后回答)

师小结:实际上算珠的颗数就是这个数各个数位上数的和。

(表格中“算珠颗数”变为“各个数位上数的和”)

(4)师:再来观察,你有什么发现?

(学生同位互说,再汇报)

师小结:通过观察,我们发现一个数各个数位上数的和是3的倍数,这个数就是3的倍数。(师板书发现)

(5)师:“各个数位上数的和”是什么意思?

3.师:每个数位上的数字的和是3的倍数,这个数就一定是3的倍数吗?(学生思考后回答)

(1)出示百数表中3的倍

师:利用这些3的倍数来验证一下。

(师说数,生验证)

(2)师:同位互说几个更大的数,互相验证吧。

(生汇报,共同验证)

(3)师:通过验证,能得出什么结论?

4.师:同学们,你们知道吗,你们得出的这个结论就是3的倍数的特征,你们真了不起。

三、应用规律 体验感悟

1.判断下面哪些数是3的倍数?

29 47 141 262 837

师:先仔细观察,认真思考,再把你的想法说给你的同位听。

(生汇报订正)

学生判断完以后,教师提问:

怎样快速准确地判断出一个数是不是3的倍数?

2.书51页第5题

师:你从题中得到了哪些信息?

生理解题意后,再独立完成,集体订正。

3.在下面每个数的□里填上一个数,使它是3的倍数。

□7 4□4 42□ 1□3

学生独立填写,集体订正。

订正完以后,提问:

如果我们先想出一种填法,怎样才能比较快的得出所有填法?

四、反思总结 自我提高

师:今天我们通过猜想、操作、验证,探究出了3的倍数的特征。这种方法在以后的数学学习中非常有用。

《《3的倍数的特征》教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式